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COMMENT 

On self-avoiding walks in critical dimensions 

Boris Chirikovt 
Budker InstiNte of Nuclear Physics, 630090 Novosibirsk. Russia 

Received 14 February 1995 

Abstract. A new interpretation of the numerical data for self-avoiding walks in critical 
dimensions is suggested on the basis of a different renormalization scheme for the random 
walk with a long-term correlation. 

In a recent paper [l] Grassberger eta1 presented very rich numerical data on the self-avoiding 
walks in critical dimensions d = 4. They clearly demonstrated the logarithmic dependence 
predicted by the standard renormalization theory. However, the critical exponent of this 
dependence, (Y = 0.31, found by the fitting of numerical data to the asymptotic relation 
(In N + 03) 

differs substantially from the~theoretical value (Y = f. The authors [I] resolve this apparent 
contradiction by including the first correction term of the renormalization theory 

with fitting parameters r = 1.331 and a = 0.1237 in the range N = 2WOOO. 
Additional numerical data up to N = IO7 are mentioned (but not given) in [I], and the 

local exponent is said to decrease down to (Y w 0.285. Meanwhile, using three-parameter 
equation (1) it is possible to fit all the numerical data with a single value of (Y = 0.298, 
and R = 1.10, A = 1.22 provided the additional data (N  = 400&107) match (2)  with the 
same r and a. The fitting accuracy is ISqI/q < 1.3 x where q ( N )  = (I?;). So, the 
comparison with the theory is a tricky task indeed [I]. 

The main purpose of this comment is to point out a different approach to the problem 
based upon another renormalization theory for the random walk with a long-term correlation 
[2,3]. The main idea of this approach is in that the self-avoiding of a trajectory with a 
finite width results in a correlation proportional to the ratio of the trajectory length N to the 
volume occupied by the diffusion [3]: 

where 6 stands for some numerical factor and where the latter equality is the standard 
correlatioddispersion relation if the correlation integral (diffusion rate) diverges. 
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The power-law solution to equation (3) 

leads to the well known Flory formula for v which is valid for d c 4. In the critical case 
d = 4 the asymptotic solution has the form (1) with R = (6b)'I3 and 01 = f. That the latter 
value is well in agreement with the numerical data is the main result of this comment. The 
remaining parameter A is determined by a non-asymptotic correction term similar to that in 
(2). 
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